Inteligencia artificial generativa texto a imagen en educación preuniversitaria: objetivos y competencias. Revisión sistemática
DOI:
https://doi.org/10.32870/dse.v0i34.1705Resumen
Diversas instituciones internacionales resaltan la necesidad de educar en el uso de la inteligencia artificial generativa (IAGen) antes del ingreso al mercado laboral. Sin embargo, la literatura advierte sobre la posible pérdida de capacidades cognitivas, lo que enfatiza la importancia de regular su uso mediante objetivos didácticos adecuados. Para analizar los objetivos y competencias asociadas a su implementación, se realizó una Revisión Sistemática de la Literatura siguiendo el Protocolo PRISMA 2020. Se identificaron 551 artículos, de los cuales 16 fueron seleccionados para un análisis detallado. Los objetivos encontrados se clasificaron en tres categorías: éticos, técnicos y creativos, predominando aquellos enfocados en fomentar el pensamiento crítico. En cuanto a competencias, algunas pueden verse limitadas mientras que otras se potencian. Se concluye que el enfoque adoptado en el uso de IAGen de texto a imagen influirá en la promoción o restricción de ciertas habilidades estudiantiles. Aunque se recomienda su enseñanza antes de la inserción laboral, es necesario profundizar en la investigación sobre los objetivos de aprendizaje y su impacto en la adquisición o disminución de competencias. En especial, la creatividad es un concepto en desarrollo que requiere mayor estudio para comprender su relación con la IAGen.
Descargas
Citas
Acaso, M.; C. Megías (2022). Soberanía visual. Una guía para la autogestión de las imágenes. Ed. Paidós
Ali, S.; D. DiPaola; R. Williams; P. Ravi; C. Breazeal (2023). Constructing Dreams using Generative AI. arXiv:2305.12013v1 [cs.HC] https://doi.org/10.48550/arXiv.2305.12013
Ali, S.; P. Ravi; K. Moore; H. Abelson; C. Breazeal (2024). A Picture is Worth a Thousand Words: Co-designing Text-to-Image Generation Learning Materials for K-12 with Educators. Proceedings of the AAAI Conference on Artificial Intelligence, 38(21), 23260-23267. https://doi.org/10.1609/aaai.v38i21.30373
Al Saud, D.; L. Alfarani (2024). The effectiveness of using Microsoft Bing Image Creator in enhancing students’ painting performance, painting creative ideas, and attitudes toward it. Journal of Research Administration. Society of Research Administrators International, 6(1), 975-992.
Anderson, L.; D. Krathwohl; P. Airasian; K. Cruikshank; R. Mayer; P. Pintrich; J. Raths; M. Wittrock (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Ed. Pearson Education Limited.
Audry, S. (2021). Art in the age of machine learning. The MIT Press. https://doi.org/10.7551/mitpress/12832.001.0001
Barron, F. (1955). The disposition towards originality. Journal of Abnormal and Social Psychology, 51, 478-485.
Benton, L.; G. Varotsis; A. Vasalou (2019). Leading by example: exploring the influence of design examples on children’s creative ideation. International Journal of Human-Computer Studies. 122, 174-183. https://doi.org/10.1016/j.ijhcs.2018.09.007
Blikstein, P. (2013). Digital fabrication and making in education: the democratization of invention. In Walter-Herrmann; J.; C. Büching (eds.). FabLabs: Of Machines, Makers and Inventors, 203-221. Transcript Publishers.
Cassidy, D.; Y. Le Borgne; F. Bellas; R. Vuorikari; E. Rondin; M. Sharma; J. Niewint-Gori; J. Gröpler; A. Gilleran; L. Kralj (2023). Use Scenarios & Practical Examples of AI Use in Education. (3). European Digital Education Hub. https://doi.org/10.48550/arXiv.2309.12320
Chen, C.; G. Hwang; C. Tsai (2014). A progressive prompting approach to conducting context-aware learning activities for natural science courses. Interacting with Computers, 26(4), 348-359. https://doi.org/10.1093/iwc/iwu004
Chen, C.; S. Chang; G.Hwang; D. Zou (2021). Facilitating EFL learners’ active behaviors in speaking: A progressive question prompt-based peer tutoring approach with VR contexts. Interactive Learning Environments, 31(4), 2268-2287. https://doi.org/10.1080/104948202021.1878232
Chen, S. (2023). Generative AI, learning and new literacies. Journal of Educational Technology Development and Exchange, 16(2), 1-19. https://doi.org/10.18785/jetde.1602.01
Chen, Y.; X. Zhang; L. Hu (2024). A progressive prompt-based image-generative AI approach to promoting students’ achievement and perceptions in learning ancient Chinese poetry. Educational Technology & Society, 27(2), 284-305. https://doi.org/10.30191/ETS.202404_27(2).TP01
De Souza, M.; M. Won; D. Treagust; A. Serrano (2024). Visualising relativity: assessing high school students’ understanding of complex physics concepts through AI-generated images. Physics Education, 59(2), 11. https://doi.org/10.1088/1361-6552/ad1e71
Díaz-Sánchez, C.; D. Chapinal-Heras (2024). Use of Open Access AI in teaching classical antiquity. A methodological proposal. The Journal of Classics Teaching, 25, 17-21. https://doi.org/10.1017/S2058631023000739
European Digital Education Hub. (s/f) European Digital Education Hub. https://education.ec.europa.eu/focus-topics/digital-education/action-plan/european-digital-education-hub
Fiebrink, R. (2019). Machine learning education for artists, musicians, and other creative practitioners. ACM Transactions on Computing Education, 19(4), 1-32. https://doi.org/10.1145/3294008
Giannini, S. (2023a). Reflexiones sobre la IA generativa y el futuro de la educación. UNESCO. https://doi.org/10.54675/ACWQ6815
Giannini, S. (2023b). Editorial. El Correo de la UNESCO. La escuela en la era de la Inteligencia Artificial. 4(3). https://doi.org/10.18356/22202315-2023-4
Guildford, J. (1950). Creativity. American Psychologist, 5, 444-454
Guo, X.; Z. Li (2023). Exploring the Significance and Path of Interdisciplinary Integration of Art Education in Primary and Secondary Schools in the Era of Artificial Intelligence. Journal of Contemporary Educational Research, 7(12), 326-333. https://doi.org/10.26689/jcer.v7i12.5840
Gutiérrez, S.; B. Castillejo (2023). El futuro de la alfabetización visual: Evaluación de la detección de imágenes generadas por inteligencia artificial. Hipertext.net, 26, 37-46. https://doi.org/10.31009/hipertext.net.2023.i26.06
Gwern (2020). GPT-3 Creative Fiction. https://www.Gwern.Net/GPT-3
Holmes, W.; I. Tuomi (2022). State of the art and practice in AI in education. European Journal of Education: Research, Development and Policies, 57(4), 542570. https://doi.org/10.1111/ejed.12533
Holmes, W.; J. Persson; I. Chonta; V. Dimitrova (2022, 18-19 de octubre). Artificial intelligence and education. A critical view through the lens of human rights, democracy and the rule of law. Francia: Council of Europe.
Hwang, G.; H. Xie; B. Wah; D. Gaševi? (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
Jauhiainen, J.; A. Garagorri-Guerra (2023). Generative AI and ChatGPT in School Children’s Education: Evidence from a School Lesson. Sustainability, 15(18), 14025. https://doi.org/10.3390/su151814025
Kliman-Silver, C.; T. Knearem; J. Wheeler (2022). Automation and inspiration: Understanding the value of artificial intelligence in user experience design tools. In Proceedings of InContext: Futuring User-Experience Design Tools Workshop at CHI Conference on Human Factors in Computing Systems (CHI’22) 1-3. https://doi.org/10.1145/3544549.3573874
Ko, H.; G. Park; H. Jeon; J. Jo; J. Kim; J. Seo (2023). Large-scale text-to-image generation models for visual artists’ creative works. In Proceedings of the 28th International Conference on Intelligent User Interfaces. 919-933. https://doi.org/10.1145/3581641.3584078
Korzynski, P.; G. Marzurek; P. Krzypkowska; A. Kurasniski (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial Business and Economics Review, 11(3), 25-37. https://doi.org/10.15678/EBER.2023.110302
Le Borgne, Y.; F. Bellas; D. Cassidy; R. Vuorikari; L. Kralj (2023). Teachers’ competences (1). European Digital Education Hub’s squad on artificial intelligence in education.
Lee, U.; A. Han,; J. Lee; E. Lee; J. Kim; H. Kim; C. Lim (2024). Prompt Aloud!: Incorporating image-generative AI into STEAM class with learning analytics using prompt data. Education and Information Technologies, 29, 9575-9605. https://doi.org/10.1007/s10639-023-12150-4
Liu, X.; N. Lau; A. Chuin; W. Leung; A. Ho; M. Das; M. Liu; C. Kwok (2023). Understanding students’ perspectives, practices, and challenges of designing with AI in Special Schools. Proceedings of the Eleventh International Symposium of Chinese CHI. 197-209. https://doi.org/10.1145/3629606.3629625
Midjourney [@midjourney]. (2022, julio 13). We’re officially moving to open-beta! Join now at discord.gg/midjourney. **Please read our directions carefully** or check out our detailed how-to guides here: https://midjourney.gitbook.io/docs. Most importantly, have fun! [Tweet]. X. https://twitter.com/midjourney/status/1547108864788553729?lang=en
OpenAI. (2024, abril 1). Home. https://openai.com
Oppenlaender, J. (2022). The creativity of text-based generative art. ArXiv:2206.02904 [cs.HC].. https://doi.org/10.48550/arXiv.2206.02904
Page, M.; D. Moher; P. Bossuyt; I. Boutron; T. Hoffmann; C. Mulrow; L. Shamseer; J. Tetzlaff; E. Akl; S. Brennan; R. Chou; J. Glanville; J. Grimshaw; A. Hro?bjartsson; M. Lalu; T. Li; E. Loder; E. Mayo-Wilson; S. Mcdonald; J. Mckenzie (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n160
Pelletier, K.; J. Robert; N. Muscanell; M. McCormack; J. Reeves; N. Arbino; S. Grajek; T. Birdwell; D. Liu; J. Mandernach; A. Moore; R. Rutledge; J. Zimmern (2023). EDUCAUSE Horizon Report. Teaching and Learning Edition. https://www.educause.edu/horizon-report-teaching-and-learning-2023
PRISMA (2020). PRISMA 2020. Transparent reporting of systematic reviews and meta-analyses. http://www.prisma-statement.org/
Rezwana, J.; M. Maher (2022). Designing Creative AI Partners with COFI: A Framework for Modeling Interaction in Human-AI Co-Creative Systems. ACM Trans. Comput. Hum. Interact. https://doi.org/10.1145/3519026
Robinson, K. (2003). Mind the gap: the creative conundrum. Critical Quarterly, 43(1), 41-45. https://doi.org/10.1111/1467-8705.00335
Roose, K. (2022). An AI-Generated Picture Won an Art Prize. Artist Aren´t Happy. New York: The New York Times. https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html
Runco, M.; G. Jaeger (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092
Stojši?, I. (2024). Possible utilization of generative artificial intelligence tools for creating digital educational escape rooms. SCIENCE International journal, 3(1), 43-47. https://www.researchgate.net/publication/379000864_Possible_Utilization_of_Generative_Artificial_Intelligence_Tools_for_Creating_Digital_Educational_Escape_Rooms
Tedre, M.; J. Kahila; H. Vartiainen (2023). Exploration on how co-designing with AI facilitates critical evaluation of ethics of AI in craft education. En Langran, E.; P. Christensen; J. Sanson (eds.). Proceedings of Society for Information Technology & Teacher Education International Conference. United States: Association for the Advancement of Computing in Education (AACE), 2289-2296. https://www.learntechlib.org/primary/p/222124/
Tsai, P.; C. Tsai (2013). College students’ experience of online argumentation: conceptions, approaches and the conditions of using question prompts. The Internet and Higher Education, 17, 38-47. https://doi.org/10.1016/j.iheduc.2012.10.001
UNESCO Institute for Statistics. (2012). International Standard Classification of Education: ISCED 2011. https://unesdoc.unesco.org/ark:/48223/pf0000216613
Vartiainen, H.; M. Tedre (2023). Using intelligence in craft education: crafting with text-to-image generative models. Digital Creativity, 34(1), 1-21. https://doi.org/10.1080/14626268.2023.2174557
Vartiainen, H.; M. Tedre; I. Jormanainen (2023). Co-creating digital art with generative AI in K-9 education: socio-material insights. International Journal of Education Through Art, 19 (3), 405-423. https://doi.org/10.1386/eta_00143_1
Williamson, B. (2023). En clase la IA debe quedarse en su sitio. El Correo de la UNESCO. La escuela en la era de la Inteligencia Artificial, 4(Octubre-Diciembre), 6-8. https://doi.org/10.18356/22202315-2023-4
Xu, L.; E. Dhonnchadha; M. Ward (2023). Harnessing the power of images in CALL: AI images generation for content-specific visual aids in less commonly taught languages. In Bédi, B.; Y. Choubsaz; K. Frioriksdóttir; A. Gimeno-Sanz; S. Vilhjálmsdóttir; S. Zahora (eds.). EUROCALL. CALL for all Languages. Short Papers. España: Editorial Universitat Politècnica de València, 92-97. https://doi.org/10.4995/EuroCALL2023.2023.16950
Yang, K.; H. Chu; L. Chiang (2018). Effects of a progressive prompting-based educational game on second graders’ mathematics learning performance and behavioral patterns. Educational Technology & Society, 21(2), 322-334
Zhou, X.; Y. Li; C. Chai; T. Chiu (2025). Defining, enhancing, and assessing artificial intelligence literacy and competency in K-12 education from a systematic review. Interactive Learning Environments. https://doi.org/10.1080/10494820.2025.2487538
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Universidad de Guadalajara

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Una vez que los manuscritos son aceptados por los evaluadores para ser publicados, los autores deberán de suscribir una carta de cesión de derechos en favor de la Universidad de Guadalajara para la edición, publicación y difusión de su obra. Ya que sea notificada la publicación de su manuscrito, el editor de la revista le enviará un correo electrónico con el formato de la carta de cesión de derechos.












