Inteligencia artificial generativa texto a imagen en educación preuniversitaria: objetivos y competencias. Revisión sistemática

Autores/as

  • Luna Solas Almagro Consejería de Educación de la Junta de Andalucía
  • María del Rosario Freixas-Flores Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.32870/dse.v0i34.1705

Resumen

Diversas instituciones internacionales resaltan la necesidad de educar en el uso de la inteligencia artificial generativa (IAGen) antes del ingreso al mercado laboral. Sin embargo, la literatura advierte sobre la posible pérdida de capacidades cognitivas, lo que enfatiza la importancia de regular su uso mediante objetivos didácticos adecuados. Para analizar los objetivos y competencias asociadas a su implementación, se realizó una Revisión Sistemática de la Literatura siguiendo el Protocolo PRISMA 2020. Se identificaron 551 artículos, de los cuales 16 fueron seleccionados para un análisis detallado. Los objetivos encontrados se clasificaron en tres categorías: éticos, técnicos y creativos, predominando aquellos enfocados en fomentar el pensamiento crítico. En cuanto a competencias, algunas pueden verse limitadas mientras que otras se potencian. Se concluye que el enfoque adoptado en el uso de IAGen de texto a imagen influirá en la promoción o restricción de ciertas habilidades estudiantiles. Aunque se recomienda su enseñanza antes de la inserción laboral, es necesario profundizar en la investigación sobre los objetivos de aprendizaje y su impacto en la adquisición o disminución de competencias. En especial, la creatividad es un concepto en desarrollo que requiere mayor estudio para comprender su relación con la IAGen.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luna Solas Almagro, Consejería de Educación de la Junta de Andalucía

Arquitecta, Maestra en TIC Aplicadas a la educación y Maestra en Educación Artísitica. Línea de investigación: Inteligencia artificial en educación. Profesora en la Consejería de Educación de la Junta de Andalucía. España.

María del Rosario Freixas-Flores, Universidad Nacional Autónoma de México

Doctora en Educación. Líneas de investigación: Formación de profesores, el impacto de la tecnología en la educación, la educación a distancia y la evaluación de la educación superior. Profesora en la Escuela Nacional de Trabajo Social, UNAM. México.

Citas

Acaso, M.; C. Megías (2022). Soberanía visual. Una guía para la autogestión de las imágenes. Ed. Paidós

Ali, S.; D. DiPaola; R. Williams; P. Ravi; C. Breazeal (2023). Constructing Dreams using Generative AI. arXiv:2305.12013v1 [cs.HC] https://doi.org/10.48550/arXiv.2305.12013

Ali, S.; P. Ravi; K. Moore; H. Abelson; C. Breazeal (2024). A Picture is Worth a Thousand Words: Co-designing Text-to-Image Generation Learning Materials for K-12 with Educators. Proceedings of the AAAI Conference on Artificial Intelligence, 38(21), 23260-23267. https://doi.org/10.1609/aaai.v38i21.30373

Al Saud, D.; L. Alfarani (2024). The effectiveness of using Microsoft Bing Image Creator in enhancing students’ painting performance, painting creative ideas, and attitudes toward it. Journal of Research Administration. Society of Research Administrators International, 6(1), 975-992.

Anderson, L.; D. Krathwohl; P. Airasian; K. Cruikshank; R. Mayer; P. Pintrich; J. Raths; M. Wittrock (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Ed. Pearson Education Limited.

Audry, S. (2021). Art in the age of machine learning. The MIT Press. https://doi.org/10.7551/mitpress/12832.001.0001

Barron, F. (1955). The disposition towards originality. Journal of Abnormal and Social Psychology, 51, 478-485.

Benton, L.; G. Varotsis; A. Vasalou (2019). Leading by example: exploring the influence of design examples on children’s creative ideation. International Journal of Human-Computer Studies. 122, 174-183. https://doi.org/10.1016/j.ijhcs.2018.09.007

Blikstein, P. (2013). Digital fabrication and making in education: the democratization of invention. In Walter-Herrmann; J.; C. Büching (eds.). FabLabs: Of Machines, Makers and Inventors, 203-221. Transcript Publishers.

Cassidy, D.; Y. Le Borgne; F. Bellas; R. Vuorikari; E. Rondin; M. Sharma; J. Niewint-Gori; J. Gröpler; A. Gilleran; L. Kralj (2023). Use Scenarios & Practical Examples of AI Use in Education. (3). European Digital Education Hub. https://doi.org/10.48550/arXiv.2309.12320

Chen, C.; G. Hwang; C. Tsai (2014). A progressive prompting approach to conducting context-aware learning activities for natural science courses. Interacting with Computers, 26(4), 348-359. https://doi.org/10.1093/iwc/iwu004

Chen, C.; S. Chang; G.Hwang; D. Zou (2021). Facilitating EFL learners’ active behaviors in speaking: A progressive question prompt-based peer tutoring approach with VR contexts. Interactive Learning Environments, 31(4), 2268-2287. https://doi.org/10.1080/104948202021.1878232

Chen, S. (2023). Generative AI, learning and new literacies. Journal of Educational Technology Development and Exchange, 16(2), 1-19. https://doi.org/10.18785/jetde.1602.01

Chen, Y.; X. Zhang; L. Hu (2024). A progressive prompt-based image-generative AI approach to promoting students’ achievement and perceptions in learning ancient Chinese poetry. Educational Technology & Society, 27(2), 284-305. https://doi.org/10.30191/ETS.202404_27(2).TP01

De Souza, M.; M. Won; D. Treagust; A. Serrano (2024). Visualising relativity: assessing high school students’ understanding of complex physics concepts through AI-generated images. Physics Education, 59(2), 11. https://doi.org/10.1088/1361-6552/ad1e71

Díaz-Sánchez, C.; D. Chapinal-Heras (2024). Use of Open Access AI in teaching classical antiquity. A methodological proposal. The Journal of Classics Teaching, 25, 17-21. https://doi.org/10.1017/S2058631023000739

European Digital Education Hub. (s/f) European Digital Education Hub. https://education.ec.europa.eu/focus-topics/digital-education/action-plan/european-digital-education-hub

Fiebrink, R. (2019). Machine learning education for artists, musicians, and other creative practitioners. ACM Transactions on Computing Education, 19(4), 1-32. https://doi.org/10.1145/3294008

Giannini, S. (2023a). Reflexiones sobre la IA generativa y el futuro de la educación. UNESCO. https://doi.org/10.54675/ACWQ6815

Giannini, S. (2023b). Editorial. El Correo de la UNESCO. La escuela en la era de la Inteligencia Artificial. 4(3). https://doi.org/10.18356/22202315-2023-4

Guildford, J. (1950). Creativity. American Psychologist, 5, 444-454

Guo, X.; Z. Li (2023). Exploring the Significance and Path of Interdisciplinary Integration of Art Education in Primary and Secondary Schools in the Era of Artificial Intelligence. Journal of Contemporary Educational Research, 7(12), 326-333. https://doi.org/10.26689/jcer.v7i12.5840

Gutiérrez, S.; B. Castillejo (2023). El futuro de la alfabetización visual: Evaluación de la detección de imágenes generadas por inteligencia artificial. Hipertext.net, 26, 37-46. https://doi.org/10.31009/hipertext.net.2023.i26.06

Gwern (2020). GPT-3 Creative Fiction. https://www.Gwern.Net/GPT-3

Holmes, W.; I. Tuomi (2022). State of the art and practice in AI in education. European Journal of Education: Research, Development and Policies, 57(4), 542570. https://doi.org/10.1111/ejed.12533

Holmes, W.; J. Persson; I. Chonta; V. Dimitrova (2022, 18-19 de octubre). Artificial intelligence and education. A critical view through the lens of human rights, democracy and the rule of law. Francia: Council of Europe.

Hwang, G.; H. Xie; B. Wah; D. Gaševi? (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001

Jauhiainen, J.; A. Garagorri-Guerra (2023). Generative AI and ChatGPT in School Children’s Education: Evidence from a School Lesson. Sustainability, 15(18), 14025. https://doi.org/10.3390/su151814025

Kliman-Silver, C.; T. Knearem; J. Wheeler (2022). Automation and inspiration: Understanding the value of artificial intelligence in user experience design tools. In Proceedings of InContext: Futuring User-Experience Design Tools Workshop at CHI Conference on Human Factors in Computing Systems (CHI’22) 1-3. https://doi.org/10.1145/3544549.3573874

Ko, H.; G. Park; H. Jeon; J. Jo; J. Kim; J. Seo (2023). Large-scale text-to-image generation models for visual artists’ creative works. In Proceedings of the 28th International Conference on Intelligent User Interfaces. 919-933. https://doi.org/10.1145/3581641.3584078

Korzynski, P.; G. Marzurek; P. Krzypkowska; A. Kurasniski (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial Business and Economics Review, 11(3), 25-37. https://doi.org/10.15678/EBER.2023.110302

Le Borgne, Y.; F. Bellas; D. Cassidy; R. Vuorikari; L. Kralj (2023). Teachers’ competences (1). European Digital Education Hub’s squad on artificial intelligence in education.

Lee, U.; A. Han,; J. Lee; E. Lee; J. Kim; H. Kim; C. Lim (2024). Prompt Aloud!: Incorporating image-generative AI into STEAM class with learning analytics using prompt data. Education and Information Technologies, 29, 9575-9605. https://doi.org/10.1007/s10639-023-12150-4

Liu, X.; N. Lau; A. Chuin; W. Leung; A. Ho; M. Das; M. Liu; C. Kwok (2023). Understanding students’ perspectives, practices, and challenges of designing with AI in Special Schools. Proceedings of the Eleventh International Symposium of Chinese CHI. 197-209. https://doi.org/10.1145/3629606.3629625

Midjourney [@midjourney]. (2022, julio 13). We’re officially moving to open-beta! Join now at discord.gg/midjourney. **Please read our directions carefully** or check out our detailed how-to guides here: https://midjourney.gitbook.io/docs. Most importantly, have fun! [Tweet]. X. https://twitter.com/midjourney/status/1547108864788553729?lang=en

OpenAI. (2024, abril 1). Home. https://openai.com

Oppenlaender, J. (2022). The creativity of text-based generative art. ArXiv:2206.02904 [cs.HC].. https://doi.org/10.48550/arXiv.2206.02904

Page, M.; D. Moher; P. Bossuyt; I. Boutron; T. Hoffmann; C. Mulrow; L. Shamseer; J. Tetzlaff; E. Akl; S. Brennan; R. Chou; J. Glanville; J. Grimshaw; A. Hro?bjartsson; M. Lalu; T. Li; E. Loder; E. Mayo-Wilson; S. Mcdonald; J. Mckenzie (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n160

Pelletier, K.; J. Robert; N. Muscanell; M. McCormack; J. Reeves; N. Arbino; S. Grajek; T. Birdwell; D. Liu; J. Mandernach; A. Moore; R. Rutledge; J. Zimmern (2023). EDUCAUSE Horizon Report. Teaching and Learning Edition. https://www.educause.edu/horizon-report-teaching-and-learning-2023

PRISMA (2020). PRISMA 2020. Transparent reporting of systematic reviews and meta-analyses. http://www.prisma-statement.org/

Rezwana, J.; M. Maher (2022). Designing Creative AI Partners with COFI: A Framework for Modeling Interaction in Human-AI Co-Creative Systems. ACM Trans. Comput. Hum. Interact. https://doi.org/10.1145/3519026

Robinson, K. (2003). Mind the gap: the creative conundrum. Critical Quarterly, 43(1), 41-45. https://doi.org/10.1111/1467-8705.00335

Roose, K. (2022). An AI-Generated Picture Won an Art Prize. Artist Aren´t Happy. New York: The New York Times. https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html

Runco, M.; G. Jaeger (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092

Stojši?, I. (2024). Possible utilization of generative artificial intelligence tools for creating digital educational escape rooms. SCIENCE International journal, 3(1), 43-47. https://www.researchgate.net/publication/379000864_Possible_Utilization_of_Generative_Artificial_Intelligence_Tools_for_Creating_Digital_Educational_Escape_Rooms

Tedre, M.; J. Kahila; H. Vartiainen (2023). Exploration on how co-designing with AI facilitates critical evaluation of ethics of AI in craft education. En Langran, E.; P. Christensen; J. Sanson (eds.). Proceedings of Society for Information Technology & Teacher Education International Conference. United States: Association for the Advancement of Computing in Education (AACE), 2289-2296. https://www.learntechlib.org/primary/p/222124/

Tsai, P.; C. Tsai (2013). College students’ experience of online argumentation: conceptions, approaches and the conditions of using question prompts. The Internet and Higher Education, 17, 38-47. https://doi.org/10.1016/j.iheduc.2012.10.001

UNESCO Institute for Statistics. (2012). International Standard Classification of Education: ISCED 2011. https://unesdoc.unesco.org/ark:/48223/pf0000216613

Vartiainen, H.; M. Tedre (2023). Using intelligence in craft education: crafting with text-to-image generative models. Digital Creativity, 34(1), 1-21. https://doi.org/10.1080/14626268.2023.2174557

Vartiainen, H.; M. Tedre; I. Jormanainen (2023). Co-creating digital art with generative AI in K-9 education: socio-material insights. International Journal of Education Through Art, 19 (3), 405-423. https://doi.org/10.1386/eta_00143_1

Williamson, B. (2023). En clase la IA debe quedarse en su sitio. El Correo de la UNESCO. La escuela en la era de la Inteligencia Artificial, 4(Octubre-Diciembre), 6-8. https://doi.org/10.18356/22202315-2023-4

Xu, L.; E. Dhonnchadha; M. Ward (2023). Harnessing the power of images in CALL: AI images generation for content-specific visual aids in less commonly taught languages. In Bédi, B.; Y. Choubsaz; K. Frioriksdóttir; A. Gimeno-Sanz; S. Vilhjálmsdóttir; S. Zahora (eds.). EUROCALL. CALL for all Languages. Short Papers. España: Editorial Universitat Politècnica de València, 92-97. https://doi.org/10.4995/EuroCALL2023.2023.16950

Yang, K.; H. Chu; L. Chiang (2018). Effects of a progressive prompting-based educational game on second graders’ mathematics learning performance and behavioral patterns. Educational Technology & Society, 21(2), 322-334

Zhou, X.; Y. Li; C. Chai; T. Chiu (2025). Defining, enhancing, and assessing artificial intelligence literacy and competency in K-12 education from a systematic review. Interactive Learning Environments. https://doi.org/10.1080/10494820.2025.2487538

Descargas

Publicado

2025-10-30