Effectiveness of an educational Chatbot in learning machining operations: A quantitative study with Engineering students

Authors

  • Fernando Montemayor-Ibarra Universidad Autónoma de Nuevo León
  • Neydi Gabriela Alfaro Cazares Universidad Autonoma de Nuevo Leon
  • Anel Jacaranda Torres Diaz Universidad Autonoma de Nuevo Leon

DOI:

https://doi.org/10.32870/dse.v0i34.1728

Abstract

This study explores the impact of an AI chatbot on learning machining operations in engineering students. Using a correlational descriptive design, a chatbot was implemented via Microsoft Teams to provide immediate and personalized feedback. Students completed a technical crossword puzzle to assess their understanding of key concepts. Results showed similar performance across groups (Group 1: 78.3%, Group 3: 73.6%, Group 2: 70.8%), with no significant differences (ANOVA, p = 0.152). Prior experience with AI did not significantly affect outcomes (t-test, p = 0.495). The chatbot proved effective in reinforcing technical knowledge, offering benefits such as 24/7 accessibility, anonymity, and adaptability. However, challenges like response accuracy and equitable access were noted. The study concludes that AI chatbots hold potential to transform engineering education, recommending gradual integration into curricula and further longitudinal research. The findings align with theories like Adaptive Learning and Self-Determination, highlighting the chatbot’s role in personalized education. Limitations include the short evaluation period and gender imbalance in the sample. Future studies should address these gaps to optimize AI’s educational impact.

Downloads

Download data is not yet available.

Author Biographies

Fernando Montemayor-Ibarra, Universidad Autónoma de Nuevo León

Doctor en Educación. Líneas de investigación: Estrategias de enseñanza en la ingeniería mediante tecnología. Teleingeniería en la educación. Profesor de la Universidad Autónoma de Nuevo León. México.

Neydi Gabriela Alfaro Cazares, Universidad Autonoma de Nuevo Leon

Doctora en Tecnología Educativa. Línea de investigación: Innovación educativa. Profesora-investigadora de la Universidad Autonoma de Nuevo Leon. México.

Anel Jacaranda Torres Diaz, Universidad Autonoma de Nuevo Leon

Maestría en Administración Industrial y de Negocios. Profesora de la Universidad Autonoma de Nuevo Leon. México.

References

Aparicio-Gómez, W. (2023). La Inteligencia Artificial y su Incidencia en la Educación: Transformando el Aprendizaje para el Siglo XXI. Revista Internacional de Pedagogía e Innovación Educativa, 3(2), 217-230. https://doi.org/10.51660/RIPIE.V3I2.133

Balseca, Á.; M. Vallejo; S. Pilco; L. Andrade (2025). La Integración de la Inteligencia Artificial en los currículos educativos de Educación General Básica. Revista Imaginario Social, 8(2). https://doi.org/10.59155/IS.V8I2.293

Bonwell, C.; J. Eison (1991). Active Learning: Creating Excitement in the Classroom. ERIC Digest.

Bravo, F.; J. Cruz-Bohorquez (2024). Engineering Education in the Age of AI: Analysis of the Impact of Chatbots on Learning in Engineering. Education Sciences, 14(5), 484. https://doi.org/10.3390/EDUCSCI14050484

Bustamante, R.; A. Camacho (2024). Inteligencia artificial (IA) en las escuelas: una revisión sistemática (2019-2023). Enunciación, 29(1), 2019-2023. https://doi.org/10.14483/22486798.22039

Felder, R.; R. Brent (2016). Teaching and learning STEM a practical guide (1st ed.). USA: Jossey-Bass. https://www.wiley.com/go/permissions

Guanga, U.; R. Lozada; R. Paz; A. Bauz; M. Reinoso (2024). Desafíos de la educación para la implementación de la inteligencia artificial. Ciencia Latina Internacional Revista Científica Multidisciplinar, 8(3), 3588-3602. https://doi.org/10.37811/cl_rcm.v8i3

González-Campos, J.; J. López-Núñez; C. Araya-Pérez (2024). Educación superior e inteligencia artificial: desafíos para la universidad del siglo XXI. Aloma: Revista de Psicologia, Ciències de l’Educació i de l’Esport, 42(1), 79-90. https://doi.org/10.51698/aloma.2024.42.1.79-90

Herrera Araya, D., Villarroel Henríquez, V., & Ríos Muñoz, D. (2023). Investigación sobre retroalimentación en español: una revisión sistemática de la literatura. Revista Meta: Avaliação, 15(46). https://doi.org/10.22347/2175-2753v15i46.3879

Holmes, W.; M. Bialik; Ch. Fadel (2019). Artificial intelligence in education: Promises and Implications for Teaching and Learning. Journal of Computer Assisted Learning, 14(4). https://curriculumredesign.org/our-work/artificial-intelligence-in-education/

Kerly, A.; P. Hall; S. Bull (2007). Bringing chatbots into education: Towards natural language negotiation of open learner models. Knowledge-Based Systems, 20(2), 177-185. https://doi.org/10.1016/J.KNOSYS.2006.11.014

Luckin, R. (2018). Machine Learning and Human Intelligence. The future of education for the 21st century. UK: UCL IOE Press. https://discovery.ucl.ac.uk/id/eprint/10178695/1/Machine Learning and Human Intelligence.pdf

Martínez-Rolán, X. (2025). Estrategias de enseñanza innovadoras: implementación de un chatbot en el Grado de Publicidad y Relaciones Públicas. European Public & Social Innovation Review, (10), 1-15. https://doi.org/10.31637/EPSIR-2025-344

Peñaherrera, W.; W. Cunuhay; D. Nata; L. Moreira (2022). Implementación de la Inteligencia Artificial (IA) como Recurso Educativo. RECIMUNDO, 6(2), 402–413. https://doi.org/10.26820/recimundo/6.(2).abr.2022.402-413

Plass, J.; R. Mayer; B. Homer (2020). Handbook of Game-based Learning. USA: The MIT Press. https://lccn.loc.gov/2019009508

Roll, I.; R. Wylie (2016). Evolution and Revolution in Artificial Intelligence in Education. Int. J. Artif. Intell. Educ., (26), 582-599. https://doi.org/10.1007/s40593-016-0110-3

Ryan, R.; E. Deci (2017). Self-determination theory. Basic psychological needs in motivation, development and wellness. Revue Québécoise de Psychologie, 38(3), 231-234. https://doi.org/10.7202/1041847AR

Sosa, G.; N. Reina (2023). La retroalimentación de actividades y uso de recursos digitales en educación superior. Revista Científica Internacional, 6(1). https://doi.org/10.46734/revcientifica.v6i1.62

Taylor, D.; M. Yeung; A. Bashet; D. Taylor; M. Yeung (2021). Personalized and Adaptive Learning. In Ryoo, J.; K. Winkelmann (eds.). Innovative Learning Environments in STEM Higher Education. Springer, Cham, 17-34. https://doi.org/10.1007/978-3-030-58948-6_2

Toribio, L. (15 de mayo de 2025). ¿IA, aliada o amenaza para la docencia? Excelsior. México. https://www.excelsior.com.mx/nacional/ia-aliada-o-amenaza-para-la-docencia/1716043

Valera, J.; M. Villa; A. Barraza (2024). Herramientas digitales basadas en gamificación e IA. Revista Desafíos Educativos, (15), 59-72. https://revista.ciinsev.com/es/articulos/15/5

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational psychologist, 46(4), 197-221. https://doi.org/10.1080/0046150.2011.611369

Universidad Autónoma de Nuevo León (UANL). (s/f). Estrategia digital UANL. https://estrategia-digital.uanl.mx/

Winkler, R.; M. Söllner (2018). Unleashing the Potential of Chatbots in Education: A State-Of-The-Art Analysis. Academy of Management, (1). https://doi.org/10.5465/AMBPP.2018.15903ABSTRACT

Published

2025-10-30